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In this paper we consider the final stage of a ‘global’ method to solve the nonlinear
programming problem. We prove 2-step superlinear convergence. In the process of analyzing
this asymptotic behavior, we compare our method (theoretically) to the popular successive
quadratic programming approach.
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1. Introduction

The nonlinear programming problem can be expressed as

minimize f(x),

. ) (1.1)
subject to ¢i(x)=0, i=1,...,m,

where m is a positive integer and f, ¢, i =1, ..., m are continuously differenti-
able functions mapping R" to R'.

Many algorithms have been proposed to solve (1.1), and recently, successive
quadratic programming has been a popular approach. While this method often
exhibits fast local behaviour, it is not a robust global procedure. There have
been, and continue to be, attempts to ‘globalize’ this method (for example, [5, 6,
9, 12, 14], however to date there does not exist an entirely satisfactory method.
(That is, currently there does not exist a method which ‘globalizes’ the local
quadratic programming approach in a consistent and natural way. See Sections 3
and 4 for more details.) We discuss the method of Han [12] in Section 3.

In [4], Coleman and Conn introduce a method, based on an exact penalty
function, which possesses both global and fast local convergence properties. In
[4], numerical results are given which support this claim, and global convergence
is proven. It is the intent of this paper to rigorously establish the superlinear
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124 T.F. Coleman and A.R. Conn/| Nonlinear programming: Asymptotic analysis

properties. In the process we will directly compare our method to the successive
quadratic programming approach.

2. Local considerations

2.1. The algorithm

In this section we will carefully consider the search direction produced by the
successive quadratic programming method when we are ‘near’ a solution to (1.1).
It will be seen that there may be unnecessary computation and storage. A
geometric interpretation of the search direction leads to a modification which
eliminates this excess. This new direction is exactly that produced by the
algorithm of Coleman and Conn (derived in [4]) when in a neighbourhood of the
solution.

Let x* be a local solution to (1.1) and suppose that at x* the active set is
{1,...,t}, where t=<n. Furthermore, let A, denote the n Xt matrix
(Voi(x5), ..., Vo, (x*)), and let ®(x*) denote (d1(x*), ..., ¢,(x*)". As in [15], we
will assume that we are sufficiently close to x* so that the active set has been
‘identified’ and the successive quadratic programming procedure reduces to the
problem

minimize Vf(x*)'d +3d"B.d,
4 2.1
such that  ¢:(x*) +(Vg:i(x*)'d =0, i=1,..,¢t.

Here the n X n matrix B, is an approximation to the Hessian of the Lagrangian
function. Using the formulation of Powell [15], the solution to (2.1) can be
written as

d“=q*+r" 2.2)
where

q" = — Bi'A(ATB'A) ' (xY),

r* ={B;'A(AB:'A) ' ALB:' — B '1VF(xY).

Provided we start sufficiently close to x*, a stepsize of unity is assumed in
[15], and thus we have

xk+1(—xk+dk, (2-3)

where d* is given by (2.2).
It is instructive to introduce the n X (n —t) matrix Z, (commonly used by Gill
and Murray, see [11], for example) which satisfies

AiZ, =0,  Z}Z = Ipy. (2.4)
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Provided Z}B\Z, is positive definite, the solution to (2.1) can be rewritten as

d“=h"*+0f (2.5)
where

h* = — Z(Z'B.Z\) ' Z\(Vf(x*) + Bw"), : (2.6)

v* = — A(ARA) TD(xY). .7

We assume that the columns of A, are linearly independent.

Let L(x,A) denote the Lagrangian function f(x)— A"®(x), where A is a
t-vector. Suppose that at iteration k we have available x* and A*, estimates to
the optimal primal and dual variables, x* and A*. Let B, be an estimate to the
current Lagrangian Hessian.

Gy(x*)— }; MG, (Y. 2.9
Egs. (2.6) and (2.7) can be interpreted in an interesting geometric fashion.
Firstly, v* is just the least-squares solution to the system
d(x*)+ Alv =0. , (2.9a)
That is, v* is a ‘Newton-like’ attempt to solve the system .
d(x)=0, (2.9v)

starting at the point x*, and using exact information computed at x*. The step h*
can be viewed as an approximation to the constrained Newton step (w.r.t. x) for
the Lagrangian (in the manifold spanned by the columns of Z, and containing
the point x*+v"). This ‘Newton’ step is based on approximate Lagrangian
gradient information at the point x* + v*. To see this consider that

ZHVFM) + Boo*] = Z3[ Vi) - 2] NV + Bt |
But B, approximates Gi(x*)—3 i A{G,(x*), the Lagrangian Hessian at x*
which we denote by G.(x*, A*). Thus,

he = — Z(ZiBZ) ' Zi(VL(x* A" + B, (2.10)
which approximates

= Z(ZiGL(x*, AN Z) ' ZUV LK, M) + Guxt, A)0b), (2.11)

provided the inverse of the projected Hessian exists. But by Taylor’s theorem,

ZAVLGM M)+ Guix' A)o* = ZIVL(x* + o091 (2.12)

Considering (2.10) and (2.12) it is clear that h* is an approximation to the
constrained Newton direction based on approximate gradient information at
k k
x +v.
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In summary then, the direction d* can be viewed as a two-part process. First,
the step v* is taken, based on exact information at x*: v* satisfies ®(x* + v) =0,
up to first-order terms. From the point x* + v* a step h* is taken in the space
spanned by Z,: h* is a ‘Newton-like’ attempt to satisfy ZE[VL((x* + v*)+ h)] = 0,
however, only approximate gradient information is used at x* + v*.

It is difficult to imagine improving on the step v* (up to first-order) since v* uses
exact information. The question should be asked, however: is h* a good
approximation to the true constrained Newton direction at x* + v*? This question is
naturally divided into the following questions:

() Is Z}BiZ: a good approximation (in some sense) to ZxG (x*, A*)Z?

(i) Is ZiVLGx* A%+ Bw*] a good approximation (in some sense) to
ZUVL(x* + v, A]?

Interestingly, Powell [15] proved that question (ii) can be ignored, to some
extent (assuming convergence), and yet a 2-step superlinear convergence rate
can be maintained. In particular, the accuracy of Z}B,v"* is not important. This
suggests that one could ignore the computation of ZiBww* altogether.
Specifically, let d* = h* + v*, where

h*= - Zk(Z{Bka)»_IZIVf(xk).

We note that since

CZIVEN = ZH (VN - 3 AT, @14

we can interpret h* as an approximation to the constrained Lagrangian Newton
direction, starting at x* (in the manifold containing x* and spanned by the
columns of Z), based on exact gradient information. If we view v* as being
added after h*, then v* is now an attempt to solve ®(x* + h* + v) = 0, based on
old information (that is, A and ® are computed at x*, not x* + h*). Nevertheless,
it can be shown that the iterate

e x* + h* 4+ vk, (2.13)

will result in a 2-step superlinear convergence rate.

We note that

(i) h* + v* is not a solution to the quadratic programming problem (2.1),

(ii) only the projected Hessian, Z; G, (x*, A¥)Z,, need be computed.

(Murray and Wright [14], suggest algorithms which, at times, also ignore the term
Z Bw*)

Since we are now viewing v* as being taken after h*, and since v* is based on
information evaluated at x*, it seems reasonable to suggest that v* be ‘improved’
by re-evaluating gradients and functions at x*+ h*. Such computation would
probably be unjustifiably expensive; however, global convergence con-
siderations [4] demand that the active constraint functions, ¢;, i =1,...,t, be
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evaluated at x*+ h* (This does not destroy 2-step superlinearity.) Thus we
define

5% = — A(ATA)'O(x* + 1Y), (2.15)
and set
x*e—x*+h*+ 5% (2.16)

We emphasize that the only new information that is obtained at x* + h* is the
vector function value ®(x* + h*). The matrix A, is not re-computed at x* + h*
but contains gradient information accurate at x*. (Thus, matrix decompositions
are not modified.) We note that properties (i) and (ii) above continue to hold for
the step h* + 5~

Based on the preceding observations, we present the following ‘local’ al-
gorithm. This local method is exactly that to which the global procedure of
Coleman and Conn [4] automatically reduces to in a neighbourhood of a
solution.

Algorithm 1 (Local)
(0) Select an x° sufficiently close to x* and set k « 1.
(1) Determine the dual estimates {\*}.
(2) ‘Update’ Z}B\Z, maintaining positive definiteness.
(3) Determine h*: Solve (ZiB.Z)h = — ZVf(x"),
and set h* < Z,h.
(4) Determine 7*:

7% — — A(ATA) 'O (x* + Y.
(5) Update:

e x*+ h* + 5
go to (1).

Note. (i) This algorithm statement is not meant to reflect the actual im-
plementation. This question is dealt with in [4].

(ii) Theoretically, it does not matter how step (1) is performed as long as
{)\"} - \*, where Vf(x*) =3[, A*¥*V¢i(x*). In practice we use the least-squares
solution to

A =Vf(x"),

computed using a QR decomposition of A, (see [4]).
Next we establish that Algorithm 1 generates a sequence {x*}, which (under a
convergence assumption) satisfies
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2.2. 2-step superlinear convergence

Before stating and proving the major result of this section, a number of
preliminary results are established. We make the following assumptions:

(A) f, &, i =1,...,m, are twice continuously differentiable;

(B) the second-order sufficiency conditions (as in Fiacco and McCormick [10])
are satisfied at x*;

(C) {x*} is generated by Algorithm 1, and {x*} € W, a compact set;

(D) the columns of A(x)= (V¢ (x), ..., Vd:(x)) are linearly independent for all
xeW.

We first establish that the horizontal step, h* is bounded by the distance
between x* and x*.

Lemma 1. Under assumptions (A)—-(D) and assuming that there exist scalars b,
b, (0 < b, < b,) such that

billylP < y"(ZiB«Zo)y < bs|ly|’, Vk,Vy€EeR™, (2.17)
then there exists an L, >0 such that

IR* )< Liflx* — x*|.

Proof. By Algorithm 1,

h*= - Zk(ZIBka)_IZIVf(xk)
= — ZW(ZiBiZ) ' ZW(VL(x*, A *)).

But, by (2.17), {(ZtB:Z\)'} is bounded above, thus there exists an [; >0 such
that
IR*]| < LIVL(x*, A ). (2.18)

But VL(x*,A*)=0, and thus using Lipschitz continuity the result follows.
(Note: unless stated otherwise, ||-|| denotes the 2-norm.)

A similar bound exists for 5~

Lemma 2. Under assumptions (A)—-(D) and (2.17), there exists an L,> 0 such that

154 < Laflx* — x*|.

Proof. From Algorithm 1,

7" = — AdATA) ' O(x* + hY).
But

&i(x* + By = ¢;(x*) + O(|R*|P),
Thus,

1541 <Nl Al - ICARAD ™ - D) + Ol [P).




T.F. Coleman and A.R. Conn/ Nonlinear programming: Asymptotic analysis 129

But ®(x*)=0. Thus using Lipschitz continuity of ¢; and the boundedness of
Ai, (ATAD™, the result follows.

Lemma 3. Under the assumptions of Lemmas 1 and 2, there exists an L;>0
such that

Ix*! = x*| < Lallx* — x*|.
Proof. Follows directly from Lemmas 1 and 2.

Clearly, by definition, the columns of (A, Z;) span R". Therefore, we can write
xK—x* = Aw" + Zauk, (2.19)

where w* € R', u* € R"™". Using these definitions, the following lemma is easy to
establish.

Lemma 4. Under assumptions (A)—-(D) and (2.17), if

wk+1 uk+1
k+1 %

X - X

e o

Proof. Obvious.

then

Lemma 4 suggests that 2-step superlinear convergence can be proved in a
separable fashion: we show separately that

k+1 k+1
w u
F—xe 0 and “lLfLux— =~

Theorem 1. Under the assumptions of Lemmas 1 and 2, and assuming that
{x*} = x*, then

k+1
w

- 0.
floc™ — x|

Proof. From Algorithm 1,
XM= x* — AATA) OOt + M)+ R* (2.21)
=x"— Ad(ATA) ' O(x") + h* + yK, (2.22)
where ||y"|| = O(|h*|Y). But for each j €{1, ..., t},
bi(x") = Vb(£9)T(x* — x¥),
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where
g=x"+05x*-x", 0=<oi=<1.

Thus if we define matrices A= (V¢i(&}),...,V(£Y), and E,=
A(AYA)'[AT— A7), then (2.22) becomes

X = x* — A(ARA) ARG — x*) — Ei(x* —x*) + h* + yk (2.23)
Using (2.23) and then multiplying by A}, we obtain

ARG = x%) = — ALE(x* — x*) + ALy~ (2.24)
Adding AT, (x**'— x*) to both sides of (2.24) yields

AT = x*) = — ATE(x* — x*) + ALy* + (Ar — A (x** = x¥),
and thus, using (2.19), we obtain '

w ! = (AL Ar) (= ARE(x* — x*) + ALy*

+ (A — AR = x%). (2.25a)

But [|y*| = O(|h*|"), and therefore using Lemma 1, assumption (D) and com-
pactness, there exists an L,> 0 such that

(A% 1A ATy < Lyflx* — x*|.

Using Lipschitz continuity of the V¢;’s (from assumption (A)), assumption (D)
and Lemmas 1, 2 and 3 it follows that

"(AZJrIAkJrI)_l" : ||(A{+l - A{)(xk+1 - X*)" = Ls"(xk - x*)uz,
for some Ls> 0. Therefore,

A < ICAT A NAT DB = 4+ (Lot Lol = 24
(2.25b)

But, by definition of ||Ei|| and the convergence assumption, {|E.|} —» 0, and
therefore our result follows.

Theorem 2. Under the assumptions of Theorem 1, and assuming that ZByZ, —
Z1G(x*,A\*)Z,, then

uk+l
——,u—.—"—_ - 0.
I I

x T —x*

(Note: Z, satisfies Z3Z, = Ii_yy, ArZ, =0, where A, = (Vdi(x*), ..., Vo (x*)).)

Proof. By Algorithm 1,

x* = x* — Z(ZEBiZ) ' ZUVL(x*, A %) + 5~ (2.26)
Define
E, = ZU(ZBZ) ' — (ZiGL(x* A¥) Z) 1Z3,
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and combining this with (2.26), we obtain

X = x* = ZW(ZEGL(x", A9 Z) T ZIVL(xK, A %)
— E.VL(&* A% + 5% (2.27)

Using a Taylor’s expansion, there exists a matrix G (x*, A*) which satisfies

VL(xX M%) = Gr(x*, A¥)(x* — x*),

GL(x* A*) = GL(x*, A %),
Let us define a matrix Ej:

Ei = ZW(ZiGL(x" M) Z) ' ZU GL(x, A*) = GL(x*, AM)]. (2.28)
In light of (2.28), (2.27) can be written as

= x* = ZUZIGL(x A¥)Z) T ZEG L (xF, A )(x* = x*)
— Eu(x* — x*) — EGr(x*, A")(x* — x*) + 7~ (2.29)

Let us define C, = ZW(Z1G.(x*, A*)Z) ' ZTG1(x*, A*) A\. Using this definition and
combining (2.19) and (2.29) we obtain

x** = xk - Zu* — Cow* = B (x* — x*)
— EGL(x* A" (x* — x*) + 5~ (2.30)

Again, if we apply (2.19) and multiply by Z, then (2.30) reduces to
Zix* = x*¥) = — ZiCow* — ZUE + EGL(x5 A¥)(xf —x*).  (2.312)
Adding ZTH(x"+1 — x*) to both sides of (2.31a) and using (2.19) yields
k' = — ZiCow* — ZUE, + E.GL(x*, A¥)(x* — x*)
A (ZEa— ZD(T = x%). (2.31b)

But using the Lipschitz continuity of the V¢;’s (from assumption (A)), a ‘fixed
method’ for computing the matrices Z,,' assumption (D) and Lemmas 1, 2 and 3,

I(Z5e = ZD(x " = x*)|| < Lf|x* — x*|-

for some L¢> 0. Therefore

<|C
L < jatls
_ . ~ *||2
+ABI+ BN G L e

"It is assumed in several places that small changes in x produce small changes in the matrices Z.
This is so, even under the stated assumption on the ¢;’s only if the basis for the null space of A, that
gives Z; is always the ‘consistent one’ that is, the ordering and the manner in which it is computed, is
consistent from iteration to iteration. We have in mind Z, = Q[0, I,_,] where A, = Q{&.
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But {|Ci|} is bounded, and using the convergence assumption {|E|} — 0. In
addition, by assumption ZiB.Zy = Z1G(x*,A\*)Z,, and thus it follows that
{IEi} = 0. But, by Lemma 3, ’

=)
[l = x|
is bounded, and by Theorem 1,

k k+1
W T — 0, and therefore —l\yljJi’,r“—“’ 0.

Ix*" = x* Ix*

Theorem 3. Under the assumptions
(i) {x} > x*,
(ii) there exist scalars b,, b, such that 0<b,<b, and
billylP < y"(ZkB«Z)y < bi|ly|’, Vk,Vy€ER",

@ii) f, ¢, i =1, ..., m, are twice continuously differentiable,
(iv) second-order sufficiency conditions hold at x*,
(v) {x*} is generated by Algorithm 1,
(vi) ZiBWZ > Z3GL(x*, \*)Z, -
(vii) the columns of A(x*) are linearly independent,

then
k+1 _ %
X X
le"‘“"ux RETT I

Proof. Follows directly from Lemma 4 and Theorems 1 and 2.

2.3. Local convergence
Next we establish that Algorithm 1 is locally convergent. That is, provided x*

is sufficiently close to x*, then {x"} - x*.

Lemma 5. Suppose that x' and x* are generated by Algorithm 1, with starting
vector x°. Under assumptions (A)—(D), if x° is sufficiently close to x*, it follows
that

42w <llx® — x*|.
Proof. By (2.25b),

1AW <[I(AZA) 7 - | A - |ATI-IE - flx" = x|
+(La+ Lo)||Agf - lx"— x*|.
Now, using Lemma 3, we have, for x° sufficiently close to x*,

lA2w?) < dflx’ — x*].
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Lemma 6. Under assumptions (A)-(D) and assuming that

Z'BZi > ZGL(x*A\*)Z, as x* - x*,
then for x°, Z4BoZ, sufficiently close to x*, ZyGy(x*, A*¥)Z, respectively,

< i = . |
Proof. Using (2.32),

A< NCll-Iw T+ AEN +DEN - NGuDlx' — x4+ Laflx' - x*|P. (2.33)
But using (2.25b), we can replace [|w'|| with

ICATAD I NAG- N Edl - I — x| + (Lo + La)|x® — x*. (2.34)
In light of (2.33), (2.34) and Lemma 3, our result follows.

Theorem 4. Under the assumptions of Lemmas 5 and 6, then for x°, ZiB,Z,
sufficiently close to x*, Z G (x*, \*)Z, respectively,

{x*} > x*,

where {x"} is generated by Algorithm 1.

Proof. By Lemmas 5 and 6 and (2.19), ||x*— x*|<3x°= x*||. It follows that
{x**} - x*. But, by Lemma 3, {x**'} - x*, and therefore {x*} - x*.

3. Global considerations

Algorithm 1 is, of course, purely local: convergence is proven if the initial
estimate, x°, is sufficiently close to x*. A ‘global’ algorithm of Coleman and
Conn [4] has the significant property that the method automatically simplifies to
Algorithm 1 in a neighbourhood of the solution. Thus a 2-step superlinear rate is
also achieved. (We define global convergence precisely in [4]; here it is sufficient
to say that under ‘weak’ assumptions we converge to a local minimum of the
nonlinear programming problem.)

Global convergence is exhibited due to the fact that an exact penalty function
is required to decrease (sufficiently) at each step. Superlinearity is achieved
because a step of h* + 5* (as given in Algorithm 1) is guaranteed to decrease the
penalty function (sufficiently) in a neighbourhood of x*, a step of h*+ &* is
always taken for large enough k.

We contrast this with the algorithm of Han [12,13]. Han proves global
convergence for an algorithm based on a successive programming approach with a
superimposed exact penalty used with the line search. Global and superlinear
convergence do not mesh together, however—superlinearity is achieved only in
the case where the stepsize is one; as we demonstrate in Section 4, a stepsize of
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one will not guarantee a decrease in the penalty function (a condition required
for globality). Thus the full algorithm must switch from a slow global method to
a fast superlinear procedure with no assurance of convergence.

4. Concluding remarks

4.1. Globality for RQP directions?

A major consequence of Theorem 3 and the global results given in [4], is that
the method of [4] possesses both global and superlinear convergence properties
simultaneously. Possessing both properties is due essentially to the fact that a
stepsize of unity (which gives superlinearity) will result in a decrease in p,
provided we are sufficiently close to x*, where

p(x) =f(x)—%zml min(0, éi(x)).

(See, for example, [1, 2, 3, 7, 16].) Can successive quadratic programming also
-satisfy these two properties?. This is, does there exist a neighbourhood of x* in
which a move x - x + d will result in a decrease in p, where d is the solution to the
quadratic programming problem? As we demonstrate below, the answer (even in
the convex case) is, in general, no.

For any x let d(x) be the solution to problem (2.1). (We assume that x is
sufficiently close to x* so that the active set is ‘identified’.) Let us make the
simplifying assumptions that

(1) exact Hessian information is used,

(i) the functions ¢;, i = 1, ..., t, are strictly concave.

Define

613 = Gix) ~ 3, M(x)Ga (),
where {\;(x)} are the dual variable estimates. Let x' satisfy ¢i(x)=0,i=1,...,t.
Thus,
d(x) = = Z(Z"6,.2)"' 2"V (x),
f'+d)— f(x') = —VfTZ(Z"GLZ) ' Z"Vf +13d" Gsd + o(|d][)
= —d"G d +3d"Gd + o(||d|).

Also, ¢i(x'+d)=3d"G,d +o(|d|). By assumption (i), ¢i(x'+d)<0, if x' is
sufficiently close to x*, and therefore

— min(0, ¢;(x’ + d)) + min(0, ¢i(x") = —3d"G4d + o(||d|])).
Thus,

p(x'+ )= p(x) = ™[ Gy + 3 (5 ~211) Gy, [d + ofldP
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But it is certainly possible that A€ (0,1/2u) for i =1,...,t. In these cases it
follows that

571
——2A;-)G |
i=l<”~ ¢

is negative definite and thus we can construct simple convex examples in which
the matrix

Gf+$(l—2)v,-)c;¢.
=1\ '

is negative definite. It follows that p(x’'+ d)— p(x) is positive. Therefore, in
these examples for all § sufficiently small, there exists an x' € N(x*) such that
p(x'+d)>p(x') and d is the successive quadratic programming direction.

4.2. Future work

The convergence rate results presented in this paper are dependent on the
projected Hessian approximation asymptotically approaching the true projected
Hessian. The full n X n Lagrangian Hessian is never approximated, and thus
computational expense is reduced. To ensure that the projected Hessian ap-
proximation approach the true projected Hessian necessitates that an expensive
method be used (such as gradient differencing along the columns of Z,), at least
in a neighbourhood of x*. In fact, the numerical results given in [4] are based on
an implementation which uses a rank-2 updating procedure when far from the
solution and then switches to a gradient difference method when nearing a
solution.

It is expected that a full quasi-Newton implementation of our method will be
developed. This expectation is fueled by the result of Powell [15] which states
that, (using the successive quadratic programming approach), the projected Hes-
sian approximations need only be asymptotically accurate along the directions of
search, and superlinearity will be maintained. (This result parallels a super-
linearity characterization given by Dennis and Moré [8].) We expect a similar
property holds for the method given here and this gives hope for a full
quasi-Newton implementation.
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